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Constructionism [PH91] is a strategy of education which has its roots in Piaget’s constructivist theory 

of learning as an active process, in which people actively con- struct knowledge from their personal 

experience of the world. In general, students do not just receive pre-built ideas from teachers: they have 

to make them up by engaging themselves with problems and projects. Papert’s constructionism indeed 

emphasizes the importance of having personally-meaningful goals and “public artifacts” (not nec- 

essarily concrete ones: either “a sand castle on the beach or a theory of the universe” [PH91]) that can 

be shared and discussed with others interested in in the same (learn- ing) enterprise [Res96]. This is 

sometimes summarized with four P-words: Projects, Peers, Passion, Play and this motto indeed 

inspired successful educational initiatives such as the Scratch programming language [Res14]. 

However, while programming is often seen as a key element of constructionist approaches (starting from 

Papert’s Logo, a programming language designed to enable the learning of geometry), the research on 

learning to program through a constructionist strategy is somewhat limited, mostly fo- cusing on how to 

bring the abstract and formal nature of programming languages into “concrete” or even tangible objects, 

graspable even by children with limited abstrac- tion power [RMMH+09, HJ07, HAA17]. However, 

constructionist ideas are floating around mainstream programming practice and they are even codified 

in some soft- ware engineering approaches: agile methods like eXtreme Programming [BA04], for 

example, suggest several techniques that can be easily connected to the constructionist word of advice 

about discussing, sharing, and productively collaborating to success- fully build knowledge together 

[Res96]; moreover the incremental and iterative process of testing ideas [Res07] fits well with the agile 

preference to “responding to change over following a plan” [BBvB+01]. 

 

This working group will study the use of a constructionist strategy to learn to program by considering the 
multifaceted skills needed by software projects: 
 

• understanding automatic interpreters able to manipulate digital information; 

• predicting concrete semantics of abstract descriptions; 

• thinking about problems in a way suitable to automatic elaboration; 

• devising, analysing, comparing solutions; 

• adapting solutions to emerging hurdles and needs; 

• organizing team work and productively sharing abstract knowledge. 
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