
 

 
 

Working Group 

Learning to program in a constructionist way 

Proposed by Mattia Monga, Università degli Studi di Milano, Italy, mattia.monga@unimi.it 

Constructionism [PH91] is a strategy of education which has its roots in Piaget’s constructivist theory 

of learning as an active process, in which people actively con- struct knowledge from their personal 

experience of the world. In general, students do not just receive pre-built ideas from teachers: they have 

to make them up by engaging themselves with problems and projects. Papert’s constructionism indeed 

emphasizes the importance of having personally-meaningful goals and “public artifacts” (not nec- 

essarily concrete ones: either “a sand castle on the beach or a theory of the universe” [PH91]) that can 

be shared and discussed with others interested in in the same (learn- ing) enterprise [Res96]. This is 

sometimes summarized with four P-words: Projects, Peers, Passion, Play and this motto indeed 

inspired successful educational initiatives such as the Scratch programming language [Res14]. 

However, while programming is often seen as a key element of constructionist approaches (starting from 

Papert’s Logo, a programming language designed to enable the learning of geometry), the research on 

learning to program through a constructionist strategy is somewhat limited, mostly fo- cusing on how to 

bring the abstract and formal nature of programming languages into “concrete” or even tangible objects, 

graspable even by children with limited abstrac- tion power [RMMH+09, HJ07, HAA17]. However, 

constructionist ideas are floating around mainstream programming practice and they are even codified 

in some soft- ware engineering approaches: agile methods like eXtreme Programming [BA04], for 

example, suggest several techniques that can be easily connected to the constructionist word of advice 

about discussing, sharing, and productively collaborating to success- fully build knowledge together 

[Res96]; moreover the incremental and iterative process of testing ideas [Res07] fits well with the agile 

preference to “responding to change over following a plan” [BBvB+01]. 

 

This working group will study the use of a constructionist strategy to learn to program by considering the 
multifaceted skills needed by software projects: 
 

• understanding automatic interpreters able to manipulate digital information; 

• predicting concrete semantics of abstract descriptions; 

• thinking about problems in a way suitable to automatic elaboration; 

• devising, analysing, comparing solutions; 

• adapting solutions to emerging hurdles and needs; 

• organizing team work and productively sharing abstract knowledge. 
 

References: 

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Em- brace Change (2Nd Edition). 

Addison-Wesley Professional, 2004. 

[BBvB+01] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin 

Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. 

Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for agile software 

development. http://agilemanifesto.org/iso/en/ manifesto.html, 2001. 

[HAA17] Matthias Hauswirth, Andrea Adamoli, and Mohammad Reza Azad- manesh. The program is 

mailto:mattia.monga@unimi.it
http://agilemanifesto.org/iso/en/manifesto.html
http://agilemanifesto.org/iso/en/manifesto.html


 

the system: Introduction to programming without abstraction. In Proceedings of the 17th Koli Calling 

Interna- tional Conference on Computing Education Research, Koli Calling ’17, pages 138–142, New 

York, NY, USA, 2017. ACM. 

[HJ07] Michael S. Horn and Robert J. K. Jacob. Designing tangible program- ming languages for 

classroom use. In Proceedings of the 1st International Conference on Tangible and Embedded Interaction, 

TEI ’07, pages 159– 162, New York, NY, USA, 2007. ACM. 

[PH91] Seymour Papert and Idit Harel. Constructionism, chapter Situating constructionism. Ablex 

Publishing Corporation, 1991. 

[Res96] Mitchel Resnick. Distributed constructionism. In Proceedings of the 1996 International 

Conference on Learning Sciences, ICLS ’96, pages 280–284. International Society of the Learning 

Sciences, 1996. 

[Res07] Mitchel Resnick. All i really need to know (about creative thinking) i learned (by studying how 

children learn) in kindergarten. In Proceedings of the 6th ACM SIGCHI Conference on Creativity &Amp; 

Cognition, C&C ’07, pages 1–6, New York, NY, USA, 2007. ACM. 

[Res14] Mitchel Resnick. Give p’s a chance: Projects, peers, passion, play. In Constructionism and 

creativity: Proceedings of the Third International Constructionism Conference. Austrian Computer Society, 

Vienna, pages 13–20, 2014. 

[RMMH+09] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn 

Eastmond, Karen Brennan, Amon Millner, Eric Rosen- baum, Jay Silver, Brian Silverman, and Yasmin 

Kafai. Scratch: Pro- gramming for all. Commun. ACM, 52(11):60–67, November 2009. 


